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Personal Statement

Throughout this project I have worked on the development of an original Python framework
(PyMFS) for implementation of the meshless numerical method: the method of finite spheres.
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in industry, and the project idea was self-proposed following discussions with my supervisor. The
early stages of the project were subject to delays as a result of my commitments representing the
University of Edinburgh’s rocketry team, endeavour, which culminated in my attendance at the
European Rocketry Challenge in Portugal in mid-October. Following this, and before commencing
with coding for the project, a significant portion of time was dedicated to gaining an understanding
of the theory behind the method of finite spheres, a method proposed by Suvranu De and Klaus-
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Once this was achieved, and a working code was developed, the project focus was moved back
towards the analysis of solid mechanics problems, but there was no longer enough time available
to extend the code for use in impulsive dynamics applications.
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report where necessary. Overall, the project was undertaken without any further major setbacks
aside from minor bugs presenting issues throughout. I have completed a number of the objectives
that I set out to achieve at the beginning of the project, and have produced a novel, functioning
Python implementation for the method of finite spheres. During this time my programming skills
have improved greatly, and I have greatly enjoyed the process of drawing upon my understanding
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to develop a robust piece of software that can be applied to novel applications.
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Executive Summary

Meshless numerical methods for solving problems posed by differential equations defined over geo-
metrically complex domains have seen significant developments in recent decades. These methods
overcome the mesh-related issues faced by the traditional finite element method (FEM): the most
widely applied numerical method in the field of solid mechanics.

A review of meshless methods identified the method of finite spheres (MFS) as a meshless method
with particular promise: overcoming the mesh-related issues faced by the FEM, whilst avoiding prob-
lems specific to other meshless methods, such as the instability issues faced by smoothed-particle
hydrodynamics. Existing software which utilises meshless numerical methods in solid mechanics is
scarce, and in particular there does not exist a readily-available code which implements the MFS.

As a result of this, a Python-based framework for implementation of the method of finite spheres is
developed with an initial focus on solving simple Poisson’s equation problems, and problems involving
the analysis of linear elastic solid bodies under equilibrium conditions. The PyMFS framework
presents novel pre and post-processing modules which facilitate efficient generation and analysis
of problems specifically tailored to the unique aspects of the MFS. A solver which implements the
underlying theory behind the MFS is also developed, making PyMFS the first available open-source
code capable of solving problems using the MFS. The framework is developed with a focus on
modular programming, maximising the efficiency of future extensions or adaptations to the code.

To validate the accuracy of the solver, a series of example problems developed and solved using
PyMFS are considered, and the results are compared with simple analytical models and results from
the FEM. It is shown that PyMFS exhibits an order of convergence consistent with the observations
of others, and is capable of achieving results with a similar level of accuracy to the FEM, but at
the expense of computational times greater by up to four orders of magnitude.

Future work relating to PyMFS therefore includes improving its efficiency by utilising parallel pro-
cessing, and implementing algorithms which reduce the number of required computations. Studies
should also address the accuracy of solutions surrounding surfaces where essential boundary condi-
tions are applied, before the application of PyMFS is extended to the field of impulsive dynamics,
for which the MFS has shown particular promise.

Keywords: The Method of Finite Spheres, Meshless Numerical Methods, Solid Mechanics, Soft-
ware, Programming, Python.
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Notation

Variables and symbols

∂ϵ – Matrix of differential operators
δI – Kronecker delta
ϵ – Strain tensor
ϕ – Vector of nodal shape functions
ϕ0I – Shepard partition of unity functions associated with node I
ϕI – Shape function associated with node I
φ – Matrix containing vector of nodal shape functions
σ – Stress tensor
BI – Sphere element associated with node I
B – Deformation matrix
C – Elasticity tensor
f – Global load tensor
f B – Applied body forces
f S – Applied surface forces
fIm – Forcing term associated with degree of freedom m of node I
f̂Im – Boundary forcing matrix term associated with degree of freedom m of node I
KUImJn – Additional forcing term required for Dirichlet boundaries
K – Global stiffness matrix
KImJn – Stiffness matrix term associated with DoFs m and n of nodes I and J
KUImJn – Additional stiffness matrix term required for Dirichlet boundaries
N – Total number of spheres within a given domain
N – Direction cosines
p – Local polynomial basis
q – Nodal degrees-of-freedom
rI – Radius associated with sphere element for node I
RMSE – Root-mean-square error
s – Localised radial coordinate
S – Domain boundary
Sf – Neumann boundary surface
Su – Dirichlet boundary surface
u – Displacement
us – Prescribed displacements on Dirichlet boundary surface
vφ – General function within the solution space
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V φI – Local approximation space associated with node I
V – Domain volume
u – Displacement
x – Position vector

Acronyms and abbreviations

1D – One-dimensional
2D – Two-dimensional
3D – Three-dimensional
BC – Boundary condition
BVP – Boundary value problem
DEM – Diffuse element method
DoF – Degree of freedom
EFG – Element free Galerkin
FEM – Finite element method
FEA – Finite element analysis
MFS – The method of finite spheres
MLPG – Meshless local Petrov-Galerkin
MLS – Moving least squares
OOP – Object-oriented programming
PDE – Partial differential equation
PU – Partition of unity
SPH – Smoothed-particle hydrodynamics
UI – User-interace
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Chapter 1

Introduction

1.1 Aims and objectives

The ability to simulate real-world, physical phenomena is an extremely powerful tool in the field
of science and engineering. The 17th century saw the birth of many of the scientific laws and
mathematical principles upon which engineering problems are being solved today, from Snell’s law
of light refraction to Bernoulli’s work on the calculus of variations [1, 2]. The present study is
specifically interested in the field of solid mechanics, in which the behaviour of solid materials is
studied under the influence of forces, as well as temperature and phase changes. To the engineer,
the tools within this field provide a platform upon which analysis of the behaviour of solid bodies
can be carried out to evaluate the effectiveness and/or safety of a certain design.

In particular, this focus looks at the application of meshless numerical methods for solid mechanics
problems. Meshless methods have received the attention of researchers in recent decades due to
their promise in overcoming the mesh-related issues faced by the traditional finite element method
(FEM) [3, 4], the most widely applied method for solving problems described by differential equa-
tions over geometrically complex domains. However, at present the implementation of meshless
methods in software (available both commercially and open-source) is scarce. The method of fi-
nite spheres (MFS) is a meshless method which has shown particular promise in the field of solid
mechanics [5, 6], for which there is no existing software implementation.

The aim of this project is therefore to develop, implement and validate a novel Python [7] framework
for solving problems in two-dimensional (2D) solid mechanics using the MFS, upon which future
developments can be built, facilitating further investigation of the method. This primary aim is
achieved through completion of the following objectives:

• Development of a preliminary code capable of solving basic differential equations over ge-
ometrically simple domains using the MFS. For example, one-dimensional (1D) Poisson’s
equation problems.

• Extension of this basic code to 2D solid mechanics applications, namely 2D elastostatics
(study of linear elastic materials under equilibrium conditions).

• Validation of code accuracy, comparing results with those from simple analytical models and

1



Chapter 1. Introduction 1.2. Project planning and management

the FEM.

• Development of a novel user-interface (UI) for pre and post-processing models specifically
tailored to the MFS.

1.2 Project planning and management

To achieve the objectives outlined in Section 1.1 within the given timeframe for the project (Septem-
ber 2021-April 2022), the project work was divided into four distinct phases, which are outlined
briefly as follows:

• Phase 1: Planning and literature review.

– Timeframe: September 2021-December 2021

– Description: Review existing literature on mesh-based and meshless numerical methods.
Develop a clear mathematical understanding of the underlying equations behind the MFS
and outline coding strategy.

• Phase 2: Preliminary code development.

– Timeframe: December 2021-January 2022

– Description: Develop preliminary code which solves simple problems in 1D and 2D
using the MFS. Analyse options for pre and post-processing of models.

• Phase 3: Final code development.

– Timeframe: January 2022-March 2022

– Description: Extend preliminary code to solve problems which are more general and
complex (2D elastostatics). Code integration with pre and post-processing UI.

• Phase 4: Final analysis and reporting.

– Timeframe: March 2022-April 2022

– Description: Compile validation cases for developed code and perform additional re-
quired numerical analysis. Finalise and publish code.

A Gantt chart outlining the project schedule in more detail can be found in Appendix A. It should
be noted that whilst initially the project had the aim of extending the use of the code to problems
in impulsive dynamics, the time required to develop a comprehensive understanding of the theory
behind the MFS was underestimated, and thus the focus of the project was shifted towards devel-
oping a more general software framework for solving simple problems using the MFS, focusing on
modularity and user-friendliness to facilitate more efficient extension of the code to wider problem
classes in the future.

2 Thomas Aston



Chapter 2

Literature review

2.1 Numerical methods in continuum mechanics

The simplest class of problem in solid mechanics is that which studies linear elastic materials
under the conditions of equilibrium: elastostatics. In 1660, Robert Hooke observed that for small
deformations of an object, the magnitude of its deformation is directly proportional to the deforming
load [8]. This proportionality is described by Hooke’s Law, which for the multi-dimensional case in
continuous media is described by the constitutive equation:

σ = C ϵ (2.1)

where σ is the stress tensor (expression of load), ϵ is the strain tensor (measurement of deformation)
and C is the fourth order elasticity tensor which provides the linear mapping between σ and ϵ.
Note the use of underline notation to denote array representation of tensor quantities in multiple
dimensions. In three dimensions the stress tensor is written as:

σ =

σ11 σ12 σ13σ21 σ22 σ23
σ31 σ32 σ33

 (2.2)

where σi j are the scalar components of stress in the reference directions i , j = 1, 2, 3.

Consider the arbitrary linear-elastic three-dimensional body shown in Figure 2.1. By writing the
sum of forces equal to zero, the continuum is governed by the equilibrium equation:

∂Tϵ σ + f
B = 0 (2.3)

where f B is the vector of applied body forces and ∂ϵ is a matrix of differential operators providing
the mapping between ϵ and displacement, u, such that:

ϵ = ∂ϵu (2.4)

The body is subject to Neumann boundary conditions:

N σ = f S, on Sf (2.5)

3



Chapter 2. Literature review 2.2. The finite element method

where f S is a prescribed traction load vector on the Neumann boundary Sf , and N is a matrix of
the direction cosines for the unit normal vector on Sf , where the outward direction is positive. The
body is also subject to Dirichlet boundary conditions:

u = us , on Su (2.6)

where us is the vector of prescribed displacements on Dirichlet boundary Su.

Figure 2.1: Arbitrary 3D body occupying a volume, V , with applied force F and boundary conditions
Sf and Su.

2.2 The finite element method

Unlike in the case of a simple geometry, such as a rectangular cross-sectioned beam, an analytical
solution to Equation 2.3 for complex geometries, such as that shown in Figure 2.1, is not easily
obtained. It is therefore common to adopt an approach to solving the problem in which the
continuum is discretised: the governing equations of the problem are solved over simpler, well-
understood discretised volumes, to obtain an approximate solution to the problem in question.
Amongst the most widely-used and successful methods in this regard is the FEM, which solves
complex boundary value problems (BVPs) by constructing a mesh of elements, such as the mesh
of tetrahedral elements shown in Figure 2.2.

Whilst there is no definitive invention date for the method, its development can be attributed
largely to work carried out by the likes of Hrennikoff and Courant in the early 1940s [9, 10], with
the first appearance of the term ’finite element’ coming from Clough in 1960 [11]. Formalising
a definition for the method is important not only because of what it represents conceptually, but
also for its significance in moving towards the development of standard computational procedures
that are capable of tackling a variety of problem classes. In perhaps the most widely referenced
literature on the subject, Zienkiewicz et al. present the FEM as "a general discretization procedure
for continuum problems posed by mathematically defined statements" [12].

2.2.1 Formulation and implementation

The steps involved in solving problems using the FEM are widely documented [12, 13], and are
here outlined briefly due to their relevance to the methods analysed later in this study. The FEM

4 Thomas Aston



2.2. The finite element method Chapter 2. Literature review

Figure 2.2: Discretisation of volume, V , with tetrahedral finite elements.

formulation for the case of two-dimensional elastostatic problems is here developed as a means of
introducing key notation to be used throughout this report.

The formulation presented here is developed directly from physical principles due to their simplicity
and significance in an engineering context. However, it is important to mention that the FEM can
be developed using a more general approach, based on purely mathematical principles, where the
problem is considered as a numerical approximation of a strong form BVP. Using the mathematical
approach, the discretised system can be achieved by representing the system in a global weak form,
where the continuous problem is formulated as an integral. The strong form refers to a solution
space in which equations or conditions are required to hold absolutely. In the weak form, these
equations or conditions are no longer required to hold absolutely, and there instead exist weak
solutions with respect to specific "test functions".

The crucial point of note, however, is that any method which is developed from a global weak form
requires a mesh for numerical integration to be performed. This concept is revisited in Section 2.3.

The principle of virtual work

The FEM can be developed rather simply by considering the virtual work principle for the system
shown in Figure 2.2. The principle of virtual work states: "for the state of equilibrium the work
of the impressed forces is zero for any infinitesimal variation of the configuration of the system
which is in harmony with the given kinematical constraints" [14]. This can be formally expressed
in mathematical form as: ∫

V

δϵTσ dV =

∫
V

δuT f B dV (2.7)

which given the linear mappings for σ and ϵ outlined in Equations 2.1 and 2.4 respectively, contains
a single remaining unknown variable: displacement, u. Thus far, the domain considered has been
continuous, and it is therefore clear that the field variable u (in two-dimensions u =

[
ux uy

]T
)

must be a continuous function of the position vector x (in two-dimensions x =
[
x y

]T
).

Thomas Aston 5



Chapter 2. Literature review 2.2. The finite element method

Discretisation and interpolation

By considering a single linear triangular element in 2D (Figure 2.3a), u can be written as a linear
combination of known shape functions φ and the unknown nodal degrees-of-freedom (DoFs) q,
yielding the mapping u ≈ φq. In 2D, φ is given by the matrix:

φ =

[
ϕ 0

0 ϕ

]
where ϕ is a vector of nodal shape functions of length n corresponding to the number of nodes per
element, ϕ =

[
ϕ1 ϕ2 . . . ϕn

]
. In the case of a linear triangular element, the shape functions

are therefore given by three linear polynomials ϕ =
[
ϕ1 ϕ2 ϕ3

]
. A key characteristic of the shape

functions in the finite element method is that they satisfy the Kronecker delta property illustrated
in Figure 2.3b:

ϕI = δI =

{
1, at node I

0, at all other nodes.
(2.8)

(a)

0
5

10 0

2

40

0.5

1

x

y

ϕ

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.3: (a) Linear T3 triangle element, including nodal numbering and displacement degrees
of freedom q1 to q6 and (b) illustration of the shape function ϕ1 of node 1.

Global system connectivity

With a mapping between u and q established, it is possible to obtain ϵ as a linear combination of
the DoFs and a mapping matrix, B = ∂ϵφ such that ϵ = B q. This expression can be substituted
into Equation 2.7 and simplified to obtain the discretised virtual work equation:(∫

V

BTC B dV

)
q ≈

∫
V

φT f B dV (2.9)

which, ignoring the approximation, can be written concisely as the linear system:

Kq = f ≡


k11 k12 . . . k1N
k21 k22 k2N
...

. . .
...

kN1 kN2 . . . kNN



q1
q2
...
qN

 =

f1
f2
...
fN

 (2.10)

6 Thomas Aston



2.2. The finite element method Chapter 2. Literature review

where K and f are often referred to as the global system stiffness matrix and load vector, respec-
tively. Stiffness matrix terms kmn correspond to global system DoFs qm and qn, and load vector
terms fn correspond to global DoF qn. It is clear from Figure 2.2 how a single node can be shared
by multiple elements and, as a direct result of this, the stiffness matrix and load vector terms
corresponding with the global system DoFs of a particular node will contain contributions from all
of the elements for which this node is shared.

Figure 2.4 illustrates an example of this for a simple 2-element system. Here, node 2 is shared by
elements e1 and e2, and as such, the global DoF q3 receives contributions from local element DoF
qe13 and qe21 . Therefore, the global stiffness matrix term k33, for example, is obtained by summing
the contributions of the individual element stiffness matrix terms ke133 and ke211 (i.e. k33 = k

e1
33+k

e2
11).

This illustrates the necessity for a connectivity array in the development of FEM codes, where the
connectivity array provides the mapping from local DoFs to global assemblage DoFs.

Figure 2.4: Example of two element finite element discretisation with local elementwise numbering
system used for assembling global system matrices from local element matrices.

Numerical integration and solution

The elementwise stiffness matrix and load vector terms require evaluation of the integrals from
Equation 2.9, for which analytical integration is only possible in specific cases. Programs based
on the FEM therefore adopt numerical integration schemes for performing integration, which can
provide efficient evaluation of integrals by evaluating the integrand at a discrete set of points,
known as integration points. This process is performed most efficiently with the FEM using Gauss-
Legendre product rules, for which an n-point rule can yield exact results for polynomials of degree
up to 2n − 1 [15].

Once the elementwise stiffness matrices have been evaluated, and the resulting global system
matrices assembled, it is possible to solve the system of equations from Equation 2.10 to find
the values of the DoFs q. Whilst it is often possible to achieve this by simply inverting K, for
large systems of equations containing a larger number of DoFs this can become computationally
expensive. The system of equations to be solved with the FEM is often sparse (containing many
zeros), and thus it is common for FEM solvers to implement specific sparse equation solvers, such
as that proposed by Irons [16].

Thomas Aston 7



Chapter 2. Literature review 2.2. The finite element method

Procedure and software implementation

This section has introduced the fundamental principles behind the FEM: the most widely im-
plemented method for solving partial differential equations (PDEs) problems in solid mechanics.
Figure 2.5 provides a flowchart visualisation of how the general FEM procedure as discussed thus
far is typically implemented in computer programs. Table B.1 in Appendix B should be used as a
reference for all flowchart symbols used throughout this report.

Start

Problem
definition

Discretise
problem

Assemble element
stiffness matrices

Assemble global
stiffness matrix

Solve system

Post-
processing Validation

End

Figure 2.5: Flowchart outlining the general steps implemented in computer programs based on the
FEM.

This representation of the overall FEM procedures includes all of the key ingredients of the numerical
aspects of the FEM:

• Interpolation scheme: the fundamental principle which allows for the continuous domain to
be discretised. Continuous field variables are approximated by a finite number of unknown
DoFs, which are interpolated by a matrix of shape functions.

• Integration scheme: the method for evaluating the key parameters required to solve the
algebraic system of equations.

• Nodal connectivity: the process of assembling global system matrices from the elementwise
matrices obtained by numerical integration.

• System solver: the method for solving the resulting algebraic system of equations for the
desired unknown variables.

8 Thomas Aston



2.3. The method of finite spheres Chapter 2. Literature review

It is these fundamental principles which have provided the basis for the implementation of the FEM
in modern computer programs. The first program to implement the FEM for finite element analysis
(FEA) of structures came in the late 1960s, when NASTRAN (NASA STRuctural ANalysis) was
developed for NASA under U.S. government funding [17]. This program was the first of its kind,
becoming the crest of a wave of implementation of computer-aided tools in engineering analysis.
Since the 1960s, with developments in both science and technology, FEA tools have become
increasingly advanced, with a wide range of commercial and open-source software packages offering
FEA tools for studying a variety of engineering problems: from simple elastostatics to more complex
problems such as transient wave propagation through inhomogeneous media.

2.2.2 Limitations

Despite its popularity, the FEM is not without its disadvantages. The FEM relies on a high-quality
mesh in order to obtain accurate results, which can pose difficulties when the domain studied is
geometrically complex (see Figure 2.1). Specific problems surrounding the mesh include:

• Mesh generation: production of a high-quality mesh on a complex domain is time consuming,
and requires care to remove distorted elements [13].

• Element distortion: distorted elements, such as those shown in Figure 2.6, reduce the ca-
pability of an element to represent polynomials of the required order, causing inaccuracies in
numerical integration and therefore a reduction in solution accuracy [18].

• Mesh alignment and refinement: problems containing discontinuities and singularities within
the domain require special treatment [13, 19].

These mesh-related issues with the FEM can contribute to problems when modelling free sur-
faces, deformable boundaries, moving interfaces, large deformations and crack propagations [20].
There is therefore significant interest in the development of numerical methods which maintain the
advantages of the FEM, whilst overcoming these mesh-related issues.

2.3 The method of finite spheres

2.3.1 An overview of meshless methods

The mesh-related issues faced by the FEM (as described above) cannot be overcome with a com-
pletely mesh-based method, and as a result a series of meshless numerical methods have been
developed over recent decades. An overview of a number of promising meshless methods is given
in [3, 4], including:

• Smoothed-particle hydrodynamics (SPH) [21];

• The diffuse element method (DEM) [22];

• The element free Galerkin (EFG) method [23];

• The hp-clouds method [24];

• The meshless local Petrov-Galerkin (MLPG) method [25].
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Figure 2.6: Classification of various distortions of a 9-node element: (a) undistorted configuration,
(b) aspect-ratio distortion, (c) unevenly-spaced-nodes distortion, (d) parallelogram distortion, (e)
angular distortion and (f) curved-edge distortion (adapted from [18]).
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A "truly" meshless technique should operate with both an interpolation and integration scheme
which are independent of any mesh (connectivity between a local and global system). Other than
the MLPG method and SPH, the methods listed here should actually be considered "pseudo"-
meshless [5]: the numerical integration techniques (and at times the imposition of boundary condi-
tions) require the assembly of a background mesh. This is not the case for the MLPG method and
SPH, which can be considered "truly" meshless. SPH is the oldest meshfree method, and offers a
number of unique advantages as a result of being a meshless Lagrangian particle method in which
the state of a system is represented by a set of particles. However, the method suffers from issues
affecting solution accuracy, such as tensile instability and spurious boundary deformations [20, 21].
These inaccuracies, alongside the general requirement for a large number of particles and accu-
rately tuned solution parameters, highlight the necessity for further work before the SPH can be
considered a robust and efficient method.

As a "truly" meshless method, the MLPG method appears to be the most promising alternative.
As is the case in the DEM and the EFG method, interpolation functions in the MLPG method are
based on moving least squares (MLS), which allows for interpolation to be performed without a
mesh. The EFG method and DEM, however, are global weak form methods. Therefore, similarly to
in the case of the FEM, they require the construction of a mesh to perform numerical integration.
The MLPG method, on the other hand, uses a local weak form. This allows for the numerical
integration to be performed over local subdomains, removing the requirement for a mesh for both
interpolation and integration [25].

With the MLPG method the local sub-domain may be any simple geometry, such as a sphere, cube
or ellipsoid. For interpolation, any class of functions with compact support, and which satisfy certain
approximation properties, such as MLS or partition of unity (PU) functions, can be used [26]. The
method has been shown to be successful when applied to a range of problems, such as thin beams
and elastostatics [27, 28], but its formulation remains general in nature. The method of finite
spheres (MFS) is a particularly promising method, which seeks to build upon the advantages of the
MLPG whilst moving towards a more tightly defined, yet still widely applicable, solution technique.

2.3.2 Basic principles

The MFS is a specialised case of the MLPG in which the choice of geometric sub-domains, test and
trial function spaces, numerical integration technique, and a procedure for imposing the essential
boundary conditions are all specified [5]. Figures 2.2 and 2.3 illustrated how the support of shape
functions corresponding to nodes in the FEM are typically n-dimensional polytopes. The MFS,
however, uses n-dimensional overlapping spheres as supports, as illustrated in Figure 2.7.

By introducing the influence of sphere overlap regions into the evaluation of integrated quanti-
ties, significant additional computational expense is incurred with the MFS [23]. There are also
additional complications introduced by the MLS in the form of matrix invertability requirements.
In the MFS, however, this can be bypassed by using the PU paradigm [5, 29]. A more detailed
explanation of this, as well as other key ingredients unique to the MFS are provided in Chapter 3
where the formulation of the method is presented in full.

The important takeaway here is that the MFS possesses a number of the advantages of meshless
methods (such as the MLPG method, DEM and EFG method) by eliminating the mesh-related
issues of the FEM, but also inheriting the FEM’s reliability and stability, which cannot be said for
SPH, the most popular meshless method at present. Table 2.1 provides a brief qualitative overview
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Figure 2.7: Discretisation of volume V with overlapping spheres centred around nodes. These
spheres act as support for shape functions in the MFS.

of the key differences between the FEM, SPH and the MFS discussed here, from which the MFS
can be identified as a particularly promising method.

Table 2.1: Comparison between the FEM, SPH and the MFS in terms of the accuracy and efficiency
of each method.

Method Meshless Advantages Disadvantages

FEM ×××
• More computationally efficient

than current meshless methods.

• Requires generation of high-
quality mesh to ensure accuracy.

• Possibility of element distor-
tions.

SPH ✓

• "Truly" meshless, eliminates
mesh-related issues of the FEM.

• Well-suited to high velocity
and large deformation applica-
tions [21].

• Tensile instability.
• Spurious boundary deforma-

tions.
• Computationally inefficient

compared to the FEM.

MFS ✓

• "Truly" meshless, eliminates
mesh-related issues of the FEM.

• More stable than SPH (essen-
tially the FEM with overlapping
elements).

• Computationally inefficient
compared to the FEM.

• Incorporation of element overlap
regions adds complexity.

2.3.3 Existing developments and implementation of the MFS

Due to the clear potential of the MFS as a relatively efficient and reliable meshless method, it
has been the subject of various research works in recent years. Figure 2.8 gives a timeline of
some of the research works which have presented key developments relating to the MFS and its
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implementation, with a particular focus in more recent years on works which have been directly
relevant to the study of solid mechanics problems.

2000

2001

2003

2014

2016

2021

The method of finite spheres: the MFS is first
presented alongside simple examples of its use [5].

Towards an efficient meshless computational tech-
nique: the method of finite spheres: optimising the
MFS for efficiency in terms of interpolation, bound-

ary conditions and integration is discussed. [30].

The method of finite spheres with improved nu-
merical integration: various numerical integration
schemes applied to the MFS are proposed [31].

Displacement/pressure mixed interpolation in the method of
finite spheres: a displacement/pressure mixed formulation

as a solution to volumetric locking is presented [32].

Hierarchical tree-based discretization for the
method of finite spheres: specialised discretisa-
tion strategies for the MFS are considered [33].

The method of finite spheres for wave propaga-
tion problems: the MFS is applied to propagation of
visco-elastic waves in 2D linear-elastic media [34].

Transient implicit wave propagation dynam-
ics with the method of finite spheres: an im-

plicit time integration method is presented for solv-
ing wave propagation problems with the MFS [35].

The method of finite spheres in three-dimensional
linear static analysis: the MFS is considered in 3D for
the first time, in the context of elastostatic analysis [6].

Acoustic scattering in nonhomogeneous media and the
problem of discontinuous gradients: Analysis and inf-sup sta-
bility in the method of finite spheres: the MFS is applied to
sound wave propagation through inhomogeneous media [36].

Figure 2.8: Timeline illustrating the main developments of the MFS in recent decades, with a focus
on works directly relevant to the field of solid mechanics.
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At the time of writing, a software implementation of the MFS has not been made publicly available
through either open-source or commercial means, presenting a barrier to researchers and other
interested parties from investigating the method further. Previous studies have implemented the
MFS by programming custom interpolation and integration routines within existing commercial
packages designed for FEA, namely ADINA, in order to solve specific problems relating to elas-
tostatics and wave propagations [6, 34]. Whilst this presents a relatively efficient implementation
to those already familiar with the method and the specific programming languages required for
developing subroutines for individual FEA packages, there are a number of benefits to developing
an open-source, easily adaptable framework which is specifically dedicated to the MFS.

In recent years, open-source implementations of the FEM and SPH in Python have received signif-
icant attention, notably through SfePy and PySPH [37, 38]. Python is a high-level programming
language [7] featuring a number of readily available libraries for scientific computing. Studies
have shown that higher-level programming languages can lead to greater programmer productiv-
ity [39, 40], and the essence of high-level languages (the use of more natural language elements
than lower-level languages, such as C/C++ or FORTRAN) allows code to be more readily under-
stood and adapted by a wider audience. The purpose of the present study is to therefore develop an
open-source Python implementation of the MFS, which will provide a framework allowing for future
research to further investigate the MFS and extend its use to a range of different applications.

2.4 Moving forward - PyMFS

The remainder of this report is therefore dedicated to the development, implementation and vali-
dation of PyMFS: a Python implementation of the method finite spheres, which is here developed
to solve Poisson equation and elastostatic problems in one and two-dimensions, but by-design can
be extended to be applied to a much wider range of problems. Chapter 3 introduces the theory
behind the MFS in more detail, and presents the interpolation and integration schemes that are
implemented in PyMFS. Chapter 4 then provides detail on the program structure of PyMFS, be-
fore giving an introduction on how to operate PyMFS interface to solve problems. This prefaces
Chapter 5, which illustrates solutions to various example problems which have been solved using
PyMFS, and discussed the obtained results, including present limitations of the developed code.
Finally, Chapter 6 draws conclusions on the work presented, and offers suggestions for possible
future work.
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Chapter 3

The method of finite spheres - theory

A general formulation of the MFS is here presented as a means of introducing the underlying theory
behind the PyMFS framework developed in Chapter 4, and is based on existing presentation of the
required equations from literature [5, 6].

3.1 Discretisation

In Figure 3.1, the arbitrary three-dimensional domain considered thus far is again presented, with
boundary S = Su ∪ Sf . The vector n is also introduced, which is the unit normal to the bound-
ary, where the outward direction is positive. The domain is discretised using the set of spheres
{B(x I , rI); I = 1, . . . N}, where x I is the position vector of the central node of each sphere BI ,
and rI is the sphere radius. Here, N is the total number of spheres, where I is used as the nodal
numbering label associated with each sphere. Figure 3.1 also illustrates the two sphere classifica-
tions in the MFS: interior and boundary spheres. Figure 3.2 provides an illustration of how sphere
elements are represented in 1D, where the elements reduce to segments of a line.

Figure 3.1: Illustration of the parameters which define each unique sphere in the MFS, adapted
from [6].

For a valid domain discretisation the following three conditions must be met:
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Chapter 3. The method of finite spheres - theory 3.2. Interpolation scheme

Figure 3.2: Illustration of the MFS sphere elements in 1D, where the "spheres" can be thought of
as segments of a line.

• The centre of each sphere (which equates to the node associated with each sphere) must lie
within the domain.

• The union of all spheres must form a complete covering of the domain.

• Spheres must not be completely contained inside other spheres.

3.2 Interpolation scheme

3.2.1 Partition of unity

As mentioned in Chapter 2, the MFS interpolation scheme is based on the PU paradigm [29]. In
the MFS, the shape functions are given by the product of Shepard PU functions and local basis
functions, where the Shepard PU functions are given by:

ϕ0I (x) =
WI(x)∑N
J=1WJ(x)

(3.1)

where WI is a positive radial weighting function associated with node I. The Shepard PU functions
can only reproduce constant functions exactly, and are therefore said to have zeroth-order consis-
tency. It is also clear from Equation 3.1 that the Shepard functions are nonpolynomial in nature. A
typical choice for the weighting function WI following the work of [41] is the quartic spline, which
can be written as:

WI(s) =

{
1− 6s2 + 8s3 − 3s4, 0 ≤ s ≤ 1
0, s > 1

(3.2)

16 Thomas Aston



3.2. Interpolation scheme Chapter 3. The method of finite spheres - theory
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Figure 3.3: (a) MFS discretisation of square domain using 9 two dimensional sphere elements, (b)
weighting function associated with node 5, W5(x) and (c) the associated Shepard PU function ϕ05.

where s can be thought of as a local radial coordinate of position x with respect to nodal coordinate
x I , given by:

s =
∥x − x I∥
rI

. (3.3)

Figure 3.3a illustrates the example of a two dimensional square domain discretised with 9 sphere
elements (which in 2D are disks) of equal radius. The weighting function associated with the central
node is shown in Figure 3.3b and the resulting Shepard PU function is shown in Figure 3.3c.

3.2.2 Approximation spaces

To generate approximation spaces with greater than zeroth order consistency, it is necessary to
introduce local approximation spaces at each node I:

V φI = spanm∈J {pm(x)} (3.4)

where h is a measure of sphere size, J is an index set and pm(x) is a local basis member. The
global approximation space, V φ can then be written as:

V φ =

N∑
I=1

ϕ0I V
φ
I . (3.5)
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Thus, any function within the solution space, vφ ∈ V φ, can be written as:

vφ(x) =

N∑
I=1

∑
m∈J
φIm(x)qIm (3.6)

where φIm is the shape function associated with the mth degree of freedom at node I and qIm is
the scalar value of the mth degree of freedom at node I. The shape functions φIm are given by:

φIm(x) = ϕ
0
I (x)pm(x). (3.7)

Here, a unique benefit of the MFS over the FEM arises: the local approximation space can be chosen
depending on the specific class of problem being solved such that the accuracy and efficiency of
the MFS are improved. For example, for problems in two-dimensional linear elasticity (which are
elliptic in nature):

V φI = span

{
1,
x − xI
rI
,
y − yI
rI
,
x − xI
rI
·
y − yI
rI

}
(3.8)

is a suitable local approximation space containing the terms of a complete polynomial of first
degree, as prescribed by the Pascal triangle shown in Figure 3.4. However, it has been shown that
for solving hyperbolic problems, such as those involving transient wave propagations, local bases
containing trigonometric functions are suitable, and allow the MFS to compete with the FEM in
terms of efficiency [34]. The local approximation space given in Equation 3.8 contains 3 terms,
meaning that there are 3 unique shape functions for each translational direction. In two dimensions,
there are two translational degrees of freedom, and therefore there are 2×4 = 8 degrees of freedom
associated with each node for the given approximation space. A visualisation of this concept is
provided in Figure 3.4.

Figure 3.4: Visualisation of complete first-order polynomial using the Pascal triangle in two dimen-
sions and illustration of how the choice of local basis terms determines the number of DoFs of the
MFS element.

Again, using the approximation space from Equation 3.8, the nodal shape functions for a single
translational direction can be developed by substituting the approximation space into Equation 3.7,
yielding:

φIm∈O(x) = {φI1, φI3, φI5, φI7} =
{
ϕ0I , ϕ

0
I

x − xI
rI
, ϕ0I

y − yI
rI
, ϕ0I

x − xI
rI
·
y − yI
rI

}
(3.9)
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Figure 3.5: Shape functions associated with the x−direction of the (a) MFS discretisation of square
domain using 9 two dimensional sphere elements, (b) weighting function associated with node 5,
W5(x) and (c) the associated Shepard PU function ϕ05.

where O is the set of odd numbers, allowing for the shape functions for only a single translational
direction to be written (in the case of the element from Figure 3.4 this would only consider the x
DoFs). These shape functions are plotted (again for the central node in Figure 3.3a) in Figure 3.5.
From Figure 3.5 there are two key points to be addressed:

• The nonpolynomial nature of the MFS shape functions is clear, particularly when compared
with the typical FEM shape function in Figure 2.3.

• Also unlike the FEM, these shape functions are not required to satisfy the Kronecker Delta
property, and they are influenced by surrounding nodes and the subsequent overlap regions. It
is therefore important to be aware that for a different arrangement of spheres in Figure 3.3a,
the shape functions shown would also change.

3.3 Local weak form

The derivation of the local weak form of the MFS for solution of general PDEs is well docu-
mented [5]. In the interest of brevity, a full derivation is therefore here omitted, but provided
in Appendix C for reference. It is here summarised that a general second-order PDE in a single
variable u over the domain V in Figure 3.1, such as:

Au = f

Thomas Aston 19



Chapter 3. The method of finite spheres - theory 3.4. Boundary conditions

where A is a second-order symmetric positive definite differential operator and f is a forcing function,
can be written for the mth DoF of the Ith node in Figure 3.1 as:

N∑
J=1

∑
n∈J
KImJnqJn = fIm + f̂Im (3.10)

where KImJn is a stiffness matrix term associated with DoFs m and n of nodes I and J respectively,
fIm is a term associated with internal domain forcing and f̂Im is a term associated with forcing on
the domain boundaries. In their general form, KImJn, fIm and f̂Im can be written as:

KImJn = a(φIm, φJn) =

∫
VI∩V
c(x)φImφJn dV +

d∑
i ,j=1

∫
VI∩V
ai j(x)

∂φIm
∂xi

∂φJn
∂xj

dV, (3.11)

fIm =

∫
VI∩V
f φIm dV, (3.12)

f̂Im =

d∑
i ,j=1

∫
SI

φImniai j(x)
∂uφ,p

∂xj
dS, (3.13)

where c(x) and ai j(x) are bounded coefficients. For interior spheres which have zero overlap with
the boundary, f̂Im = 0, and therefore Equation 3.10 reduces to the system:

N∑
J=1

∑
n∈J
KImJnqJn = fIm.

In Chapter 4, a solver is developed for obtaining solutions to specific problem classes using the
MFS, and Chapter 5 presents selected results. Three distinct problems are considered:

• Poisson′s equation in 1D :
d2u(x)

dx2
+ f (x) = 0 (3.14)

• Poisson′s equation in 2D :
d2u(x, y)

dx2
+
d2u(x, y)

dy2
+ f (x, y) = 0 (3.15)

• 2D elastostatics : See Equation 2.3.

Appendix D provides the complete set of equations required to solve the system in Equation 3.10
for each of these problem classes.

3.4 Boundary conditions

Since the MFS shape functions are not required to satisfy the Kronecker delta property, any sphere
element which intercepts the domain boundary will contribute to the evaluation of the boundary
forcing term f̂Im. The remainder of this section will present how this affects the incorporation of
natural and essential boundary conditions (BCs) in the MFS, and the strategies adopted in PyMFS
to deal with these BCs.

It is necessary to define the regions over which integration is required for boundary spheres. Fig-
ure 3.6 illustrates examples of two boundary spheres. Figure 3.6a shows a sphere which intersects
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a natural boundary condition, for which integration over the sphere is performed over BI ∩ V ,
and integration over the Neumann boundary is performed on the surface segment SfI . Similarly,
for spheres intersecting boundaries with Dirichlet conditions applied, integration is performed over
BI ∩ V and boundary integration is now performed along SuI .

(a) (b)

Figure 3.6: Illustration of regions of integration for spheres intersecting surfaces with (a) natural
and (b) essential boundary conditions applied, adapted from [5].

Natural boundary conditions

The imposition of natural boundary conditions in the MFS is relatively simple. For spheres with
nonzero intersection with surfaces with prescribed natural BCs, Equation 3.10 applies, in which f̂Im
is calculated as follow:

f̂Im =

∫
SfI

φImf
s dS. (3.16)

Essential boundary conditions

Due to the absence of the Kronecker delta property for the MFS shape functions, the imposition
of essential boundary conditions is made considerably more complex. In [5] it is shown that for
spheres which intersect surfaces with prescribed essential BCs, f̂Im can now be written as:

f̂Im =

N∑
J=1

∑
n∈J
KUImJnqJn − f UIm (3.17)

where KUImJn and f UIm can be written in general as:

KUImJn =

d∑
i ,j=1

∫
SuI

∂

∂xj

(
ai j(x)φImφJnni

)
dS, (3.18)

f UIm =

d∑
i ,j=1

∫
SuI

us
∂

∂xj

(
ai j(x)φImni

)
dS. (3.19)

By substituting Equation 3.17 into Equation 3.10 and rearranging, the linear system for spheres
intersecting surfaces with essential BCs applied can be written as:

N∑
J=1

∑
n∈J
(KImJn −KUImJn) qJn = fIm − f UIm. (3.20)
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The strategy proposed here provides the most generalised approach to implementing Dirichlet BCs
in the MFS. However, evaluation of the additional terms KUImJn and f UIm adds computational
expense and complexity, due to the requirement to calculate positions at which spheres intersect the
surfaces upon which the BCs are applied. Therefore, [5] propose the special nodal arrangement on
Dirichlet boundaries shown in Figure 3.7, which bypasses this requirement by forcing the Kronecker
delta property.

Figure 3.7: Special nodal arrangement for Dirichlet boundaries.

For the arrangement shown, in which nodes are equispaced along the surface and sphere radii are
equal to the nodal spacing, the shape functions associated with the first DoF in each translational
direction appease the Kronecker-delta property. It was not explicitly stated at the time, but this was
highlighted for the regular arrangement of nodes in Figure 3.5. By adopting this arrangement, it is
possible to delete the rows and columns from the global structure matrices associated with these
DoFs, resulting in a reduced system of Equation 3.10. This arrangement is further investigated in
Chapter 5.

3.5 Numerical integration

With the system of equations to be solved, and the required variables fully defined, it is necessary
to implement a suitable numerical integration scheme for evaluation of the integrated quantities.
As discussed in Chapter 2, various integration schemes have been proposed and evaluated for the
MFS, such as in [31]. However, these schemes typically require coordinate transformations and
subsets of rules depending on the sphere classification, which adds unnecessary complexity and
computational expense.

The integration scheme implemented in PyMFS is a modified piecewise Gauss–Legendre quadrature
rule [42] that was developed for solving wave propagation problems with the MFS [34] and has
since been proven to be accurate in solving problems in 3D elastostatics [6]. This scheme appears
to be the most simple meshless integration procedure used to-date, offering the advantage of
a single universal integration rule applied to interior and boundary spheres, and sphere overlap
regions, as defined by Figures 3.8a - 3.8c. Appendix E provides further detail on the underlying
mathematical principles by which integrals are evaluated using Gauss–Legendre quadrature rules,
whilst this section is limited to presenting the integration points adopted in PyMFS.
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The adopted integration scheme is developed by dividing the subdomain of each sphere element
into quadrants. Within each of these quadrants, it is then possible to use the same quadrature
rules as adopted in FEA [13]. This provides two main advantages over other more complex inte-
gration rules developed for the MFS: the density of integration points is uniform, and integration of
sphere overlaps is simple. Figures 3.8d - 3.8f show the included integration points for each sphere
classification. Points which lie within the highlighted subdomains are included in the evaluation
of integrals, whilst points which are within the integration quadrants, but outwith the highlighted
subdomain, are not included in the evaluation of integrals. Note that due to the requirement
to integrate complicated nonpolynomial functions over geometrically complex subdomains, a large
number of integration points are required for the MFS [34]. Following the work of [34, 6], PyMFS
therefore adopts 6× 6 = 36 integration points within each quadrant.

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Illustration of sphere region definitions and their integration points: (a) interior sphere,
(b) boundary sphere, (c) sphere overlap and the corresponding integration points associated with
(d) interior sphere, (e) boundary sphere and (f) sphere overlap.
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Chapter 4

Programming the method of finite
spheres - PyMFS

This chapter details the implementation of the underlying theory behind the MFS (presented in
Chapter 3) in a Python programming structure: PyMFS. PyMFS is a software application capable of
developing, solving and post-processing Poisson equation problems in 1D and 2D, and elastostatics
problems in 2D. The PyMFS project uses Git [43] for source code management and GitHub [44]
for hosting, with the project currently hosted at the following repository:

Link 1: PyMFS

https://github.com/ThomasAston/PyMFS

The software is developed with the aim of utilising Object-Oriented Programming (OOP) in
Python [45] where possible, increasing modularity and subsequent efficiency of future extension
of the code to a wider range of problems. The first official release of the code will be published
following the publication of an accompanying journal article, for which a manuscript has been
completed and is ready for submission to Advances in Computational Mathematics [46].

4.1 Structure

4.1.1 Overview

The broad structure of PyMFS is similar in nature to the typical structure of computer programs
based on the FEM, illustrated in Figure 2.5. Figure 4.1 illustrates a flowchart of the general
user workflow in PyMFS. With PyMFS the key stages of the solving process are handled using
classes, between which objects containing properties are passed. It can be seen that the program
is comprised of three core classes: pre_process, solve and post_process. A description of
these classes and their primary purpose is given in Table 4.1.

Whilst similar to FEM solvers in a broad sense, PyMFS is built primarily for the purpose of solving
problems with the MFS. It aims to make up for the current lack of efficiency of the solution
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Figure 4.1: Flowchart outlining the user workflow for PyMFS.

Table 4.1: Description of PyMFS core classes.

Class Description

pre_process
Optional class. Used to generate .mfs files to be sent to solve. Han-
dles input geometry, generates user-interface, creates input_data
object to be packaged in .mfs file.

solve
Mandatory class. Solves input .mfs files. Generates solution object
which is inherited by post_process if included.

post_process
Optional class. Inherits solution from solve. Contains classes ca-
pable of post-processing solution object to produce physically mean-
ingful results and output plots.

procedure (discussed in more detail in Chapter 5) of the method by focusing efforts on optimising
the potential user benefits that a meshless method offers: removing time-consuming pre-processing
stages and utilising the OOP approach to facilitate user-friendly customisation of process stages.
The project also utilises a number of pre-existing Python libraries, which are listed alongside a
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description of their purpose in PyMFS in Table 4.2.

Table 4.2: Description of existing Python libraries used in PyMFS.

Library Description

numpy [47]
Provides rapid vectorised operations through the creation of NumPy
arrays.

scipy [48] For dealing with sparse matrices, solvers and algorithms.

sympy [49] For handling basic symbolic maths operations.

matplotlib [50]
For producing high-quality, LATEXcompatible plots in pre and post-
processing.

Shapely [51] For basic geometry manipulation tasks.

4.1.2 Pre-processing

Preparation of domain geometry, definition of material properties and application of BCs and forces
are handled by the pre_process class. The hierarchy of related classes is illustrated in Figure 4.2,
which illustrates how objects containing user-defined properties related to domain geometry and
nodal coordinates are passed to the pre_process class. A user-interface is then generated, allowing
the user to apply BCs, loads and material properties, from which a file with the extension .mfs is
compiled, containing all of the information that is required to be passed to the solve class. More
detailed instruction on how this is performed by the user is provided in Section 4.2.

.mfs file

compile_MFS

pre_process

domain nodes

Edges Subedges Number
of nodes

Figure 4.2: Hierarchy of classes related to pre_process.
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4.1.3 Solve

Implementation of the core equations outlined in Chapter 3 is performed primarily using the solve
class. A diagram illustrating the class hierarchy of related classes is again provided, here in Fig-
ure 4.3. It is shown here how the .mfs solve class inherits properties from the generation of the
system variables to create an object possessing the properties which are inherited by the post-
processing module. It is here that the OOP approach is of particular benefit: Python object
serialisation can be performed using the pickle [52] module to rapidly save solution data before
post-processing. More detail on this is provided in Section 4.2.

Figure 4.4 provides a flowchart visualisation of the broad structure of the algorithm which is im-
plemented by the system_variables class for generation of the variables K and f , performed by
looping over the list of nodes in the problem domain.

4.1.4 Post-processing

Post-processing of the results contained in the solution object produced by the solve class are
handled by the post_process class. The hierarchy of related class is shown in Figure 4.5. It can
be seen here that post_process inherits solution properties from solution, from which the user
can then specify their desired output data and plots, which are produced by reassembling function
fields from the obtained nodal DoFS. The current version of PyMFS allows the user to select from
results for displacement, strain and stress. Again, further information on how this is carried out is
provided in Section 4.2.

4.2 Useage

This section provides an introduction to the user-implementation of the components required to
start solving problems with PyMFS: from an empty Python script to a full set of output results with
minimal lines of code. The first stage of any analysis with PyMFS is to navigate to the directory
containing the PyMFS installation, open a new Python script, and import the required components
of PyMFS using:

from PyMFS import *

4.2.1 Pre-processing

With PyMFS imported, it is possible to begin preparing the problem geometry. PyMFS is currently
capable of handling geometry in 2D, which is prepared by compiling a list of external and internal
surfaces with a set of functions, before compiling the surfaces in a single domain object with the
domain class. For example, the code listing which follows produces the geometry in Figure 4.6.
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solve

Solution
object

system_variables

input_data

.mfs file

K_mat f_vec

gauss_points

C_mat

direction_cosines

B_mat

shape_functions

Figure 4.3: Hierarchy of classes related to solve, including user input requirements.
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Start assembly

Read input .mfs

I ≤ N Increment I

f_vec

J ≤ N Increment J

K_mat

End J loop

End I loop

End assembly

True

True

False

False

Figure 4.4: Flowchart illustrating system matrix assembly in PyMFS, N is the total number of
nodes in the domain. f is assembled in the f_vec class whilst looping over every node, whilst K is
assembled in the K_mat class whilst looping over every node and the influence of all nodes in the
domain.
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post_process

strainu stresssolution

Figure 4.5: Hierarchy of classes related to post_process.
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'''
External surfaces:
'''
ex_surface1 = straight_line(point1 =[5, 0], point2 =[10, 0])
ex_surface2 = circular_segment(center =[0,0], radius =10, start=0, end=np.pi/2)
ex_surface3 = straight_line(point1 =[0, 10], point2 =[0, 5])
ex_surface4 = circular_segment(center=np.array[0,0], radius=5, start=np.pi/2, end=0)
ex_surfaces = [ex_surface1 , ex_surface2 , ex_surface3 , ex_surface4]
'''
Internal surfaces:
'''
in_surface1 = circle(center =[7,2], radius =1)
in_surface2 = circle(center=np.array[2,7], radius =1)
in_surfaces = [in_surface1 , in_surface2]
'''
Generate a domain object from the surfaces:
'''
my_domain = domain(ex_surfaces , in_surfaces)

Figure 4.6: Example domain generated with PyMFS.

With the geometry defined, the domain object can then be passed to the nodes class to generate
an object containing nodal coordinate properties around which sphere elements are centred, based
on user inputs on the desired number of nodes along the x and y directions. The nodes class also
contains the option to input the nodal distribution method. The below code generates the domain
discretisation in Figure 4.7.

'''
Discretise the domain by selecting number of nodes.
'''
my_nodes = nodes(my_domain , nx=10, ny=10, method='Regular ')

The final stage of pre-processing is to define BCs and forcing, which can be performed by passing
the domain and node objects to the pre_process class. Here, the user should also define a ’job-ID’,
which will be used as the file name for the .mfs input file generated upon job submission. The
following code snippet prompts the opening of the UI window shown in Figure 4.8.
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Figure 4.7: Example domain discretisation in PyMFS.

'''
Enter the pre -processing UI to view geometry , set boundary conditions and
submit the job for solving:
'''
pre_process(my_domain , my_nodes , job_ID='Example ')

Figure 4.8: Example pre-processing UI in PyMFS.

After defining BCs and loads, the user selects the ’Submit job’ button, upon which all pre-processing
properties are compiled and saved in a .mfs file, which can be opened and edited in a text file editor
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of choice. This allows efficient editing of jobs for which small changes are desired before solving.
Appendix F provides more detail on the .mfs file format and editing procedure.

4.2.2 Solve

With a complete problem definition contained within the generated input file, it is possible to solve
for the unknown DoFs. In PyMFS this is simply done by sending the .mfs file to the solve class
as follows:

'''
Select the input file to be solved and send it to PyMFS solver:
'''
solution = solve(job_ID='Example.mfs')

It is recommended that the resulting solution object is saved to a file of its own using pickle,
which can be performed with the following code:

'''
Recommended , dump solution object into .sol file for later use.:
'''
import pickle
filehandler = open("Example.sol", 'wb')
pickle.dump(solution , filehandler)

The saved file can then be loaded as a solution object using:

'''
Open existing .sol file and load solution object:
'''
import pickle
filehandler = open("Example.sol", 'rb')
solution = pickle.load(filehandler)

4.2.3 Post-processing

Once a solution object is obtained, it can be sent to the post_process class for post-processing.
The user can also specify desired output contour plots and data files as shown in the below code.

'''
Pass solution object to post -processing.
'''
post_process(solution)
post_process(solution).u() # Displacement contours
post_process(solution).strain () # Strain contours
post_process(solution).stress () # Stress contours

Raw output data files are saved in .csv format, whilst contour plots of the data are generated
using matplotlib, utilising its compatibility with LATEX to produce high-quality plots suitable for
direct use in scientific and technical reports.
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Validation cases

In this chapter, a series of example problems are considered for validation of the accuracy of the
PyMFS solver. The PyMFS download available at Link 1 contains all of the .mfs files required to
run the problems presented here.

5.1 Poisson’s equation

This section briefly presents the suitability of PyMFS for solving Poisson’s equation problems for
cases in 1D and 2D. The problems presented here are solved using the MFS in [5], and thus detailed
analysis is reserved for when differences between the results presented here and those from [5] arise.

5.1.1 1D

The first problem considered is Poisson’s equation on a 1D domain (Equation 3.14), in which a
bar is subjected to a distributed axial load. The load f (x), and natural and essential boundary
conditions f s and us respectively, are selected as:

f (x) = x, f s =

[
du

dx

]
x=1

= 2, us = u(0) = 1,

such that the analytical solution to Equation 3.14 is:

û(x) =
1

2

(
x −
x3

3

)
+ 2x + 1.

In Figure 5.1 it is illustrated that for regular arrangements of N = 3 and N = 7 nodes along the
domain with radii (in 1D, line segments) equal to the distance between nodes, it is possible to
exactly satisfy the analytical solution, which is consistent with the findings of [5].

5.1.2 2D

The first example considered in 2D is another Poisson’s equation problem, here posed over a square
domain with mixed BCs, as illustrated in Figure 5.2.
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Figure 5.1: Analytical solution to Poisson’s equation in 1D, compared with regular distribution of
6 1D sphere elements as presented in [5], as well as solutions obtained with PyMFS using (a) 3
sphere elements and (b) 7 sphere elements.

Figure 5.2: 2D square domain on which Poisson’s equation is solved. Neumann BC applied to
surface Sf at x = −1 and Dirichlet BC applied to surface Su at x = 1.
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The domain forcing f (x, y), and natural and essential boundary conditions f s and us respectively,
are selected as:

f (x, y) =
[
π2

(
7x + x7

)
− 42x5

]
cosπy, f s(x = −1, y) = 14 cosπy, us(x = 1, y) = 8 cosπy

such that the analytical solution û(x, y) to Equation 3.15 is:

û(x, y) =
(
7x + x7

)
cosπy.

Figure 5.3a provides a 3D surface representation of the analytical solution across the domain. The
problem is solved using the PyMFS framework for two domain discretisations: regular arrangements
of N = 3 × 3 = 9 nodes and N = 6 × 6 = 36 nodes over the domain. Figures 5.4a and 5.4b
illustrate 3D surface representations of the solution u(x, y) obtained using the respective domain
discretisations, for which Figure 5.4 presents contour plots of absolute error in the obtained solution,
û(x, y)− u(x, y).
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Figure 5.3: Contour plot of u(x, y) obtained by solving Poisson’s equation over square domain:
(a) analytically, (b) using 3× 3 = 9 sphere elements and (c) using 6× 6 = 36 sphere elements.

Figure 5.5 presents plots of the analytical solution and solution obtained using PyMFS for 36 nodes
along a series of lines over the solution domain, including results from [5]. It is observed that the
solution obtained using PyMFS is weakest at x = 1, which corresponds with surface upon which
the Dirichlet BC is applied. Unlike in [5], PyMFS is here implemented without exploiting the special
nodal arrangement presented in Section 3.4: the rows and columns of the global system matrices
associated with the Kronecker-delta appeasing DoFs are not deleted, and thus there are additional
numerical errors present in the solution at the Dirichlet boundary due to the inclusion of numerically
integrated quantities KUImJn and f UIm. The implications of adopting the specialised arrangement
are discussed in more detail in the following sections.
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Figure 5.4: Contour plots illustrating the absolute error in the solutions to Poisson’s equation
u(x, y) obtained using (a) 9 and (b) 36 nodes.
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Figure 5.5: Comparison between analytical solution to 2D Poisson’s equation with results from [5]
and PyMFS using regular arrangement of 36 nodes along slice of domain at: (a) y = 0 (b) y = 1
and (c) x = 1.
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5.2 2D elastostatics

The use of PyMFS for solving solid mechanics problems in 2D elastostatics is introduced. The
special arrangement of nodes along Dirichlet boundaries is considered, and the results of PyMFS
are compared with those obtained using the FEM.

5.2.1 Case 1: tension

The first problem considered in the category of 2D elastostatics is that of a square plate, fixed
at one end and subjected to a tensile load, as illustrated by Figure 5.6. Relevant material and
domain properties are given in Table 5.1. The domain discretisations used to solve the problem
using PyMFS are shown in Figure 5.7, for which nodes are equispaced across the domain with equal
sphere radius in all cases.

Figure 5.6: Problem definition for case 1.

Table 5.1: Parameters used in study of case 1.

Parameter Symbol Value Unit

Young’s modulus E 100 N/m2

Poisson’s ratio ν 0 -
Length L 2 m

Figure 5.8 shows contour plots of the assembled displacement field in the x direction, ux , obtained
with PyMFS discretisations D1-D4, whilst Figure 5.9 similarly shows contour plots for uy . Fig-
ures 5.10a and 5.10b illustrate the analytical solution for ux along two lines over the domain, at
x = 0 m and y = 2 m, respectively. Plots of the solutions obtained using D1-D4 are also presented,
in which the special nodal arrangement has once again been neglected. Figure 5.10b, however, in-
cludes plots of the obtained solution where the exploitation of the Kronecker-delta property has
been applied for D2 and D3, signified with a *.
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(a) (b)

(c) (d)

Figure 5.7: Sphere element discretisations used for case 1: (a) D1, (b) D2, (c) D3 and (d) D4.

(a) (b)

(c) (d)

Figure 5.8: Contour plots of displacement field in the x direction for: (a) D1, (b) D2, (c) D3 and
(d) D4.
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(a) (b)

(c) (d)

Figure 5.9: Contour plots of displacement field in the y direction for: (a) D1, (b) D2, (c) D3 and
(d) D4.

From Figures 5.8, 5.9 and 5.10a, it is once again clear that whilst increasing the number of nodes
results in convergence towards the analytical result, solutions obtained using PyMFS still fail to
exactly satisfy the conditions prescribed by the Dirichlet BC, ux(x = 0, y), uy (x = 0, y) ̸= 0.
In Figure 5.10b, however, it can be seen that by exploiting the properties of the special nodal
arrangement presented in Section 3.4, the prescribed displacements at the Dirichlet boundary are
satisfied exactly. Table 5.2 presents the root-mean-square error, RMSE(ux), for each of the PyMFS
solutions ux , calculated with n = 10 equispaced points along the line y = 2 using the equation:

RMSE(ux) =

√∑n
i=1 (ux − ûx)

2

n
(5.1)

where ûx is the analytical value of the x-displacement at a given point. RMSE is a simple measure
which has been shown to be effective in the accuracy analysis of meshless numerical methods [53].

Convergence of RMSE is presented in Figure 5.11, for which an order of convergence (slope) of
approximately 1.05 is observed. This is considerably lower than [5], in which an order of convergence
of 4 is observed (using a complete second-order polynomial approximation space, unlike the first-
order approximation space used here), and [6] where an order of convergence of approximately 1.92
was observed.

From Table 5.2 it is observed that by exploiting the regular arrangement of nodes on the Dirichlet
BC a greater solution accuracy is achieved. For example, for D3*, RMSE(ux) = 0.010, whilst
for the equivalent discretisation D3, RMSE(ux) = 0.025. For the remainder of this chapter the
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Figure 5.10: Case 1 analytical solution and solutions using PyMFS discretisations, ux , along lines:
(a) x = 0 and (b) y = 2 for case 1. Note, * denotes instances where the special nodal arrangement
is exploited.

Table 5.2: Case 1 RMSE of solutions obtained with discretisations D1-D4, and discretisations D2*
and D3* which exploit a special nodal arrangement.

Discretisation Nodes DoFs RMSE Units

D1 9 72 0.129 m
D2 36 2,592 0.055 m
D3 144 1,152 0.025 m
D4 576 4,608 0.012 m

D2* 36 2,592 0.036 m
D3* 144 1,152 0.010 m

proposed special nodal arrangement along Dirichlet BCs is implemented in the solve class of
PyMFS for greater accuracy.
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Figure 5.11: Case 1 convergence of RMSE for D1-D4.

5.2.2 Case 2: cantilever bending

The accuracy of PyMFS is now considered for the case of a cantilever bending problem under
2D plane stress conditions, subject to the conditions presented in Figure 5.12, where the relevant
parameters are now listed in Table 5.3. The domain discretisations used with PyMFS remain those
from Figure 5.7, but as discussed the solve class now deletes the rows and columns of the system
matrices associated with DoFs which satisfy the Kronecker-delta property.

Results from PyMFS are here compared with those obtained using the FEM, for which the meshes
FEM1-FEM4 used in the analysis contain an equivalent number of nodes to D1-D4, as shown in
Figure 5.13. 4-node, bilinear plane stress quadrilateral elements with full numerical integration
are used for the FEM solutions, such that each element has an equal number of DoFs as the
MFS sphere elements. Monotonic convergence of results is expected due to the strategy of mesh
subdivision [13]. The limit solution is obtained by solving the same problem with a FEM mesh of
100x100 elements.

Figure 5.12: Problem definition for case 2.

Figure 5.14 shows the deformed shapes of the beam obtained using the MFS, superimposed on
the deformed shape of the corresponding FEM solutions, and Figure 5.15 illustrates the contours
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Table 5.3: Parameters used in study of case 2.

Parameter Symbol Value Unit

Young’s modulus E 100 N/m2

Poisson’s ratio ν 0 -
Length L 2 m

(a) (b)

(c) (d)

Figure 5.13: FEM discretisations used for case 2: (a) FEM1, (b) FEM2, (c) FEM3 and (d) FEM4.

of uy for the solution using discretisation D4. Table 5.4 presents the values of RMSE(uy ) for each
of the solutions, where the FEM-Limit solution is used as the zero-error reference. This table also
gives the CPU time taken to obtain each solution, presented as multiples of the CPU time for the
FEM limit solution.

Table 5.4: Case 2 RMSE and time multiplier, using the FEM-Limit solution as reference.

Discretisation Nodes DoFs RMSE Unit Time multiplier

D1 9 72 0.5864 m 3.56
D2 36 2,592 0.0511 m 13.04
D3 144 1,152 0.0117 m 108.31
D4 576 4,608 0.0038 m 1650.50

FEM1 9 18 0.0070 m 0.10
FEM2 36 72 0.0023 m 0.10
FEM3 144 288 0.0007 m 0.11
FEM4 576 1,152 0.0005 m 0.21

FEM-Limit 10,000 20,000 - m -a

aFEM-Limit, CPU time = 0.8s

From Table 5.4, it can be seen that for PyMFS to achieve a level accuracy with the same order
of magnitude as the FEM (where Abaqus/Standard has been used for all FEM models), it requires
a CPU time which is four orders of magnitude greater. This performance in terms of efficiency
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Figure 5.14: Deformed shapes obtained using: (a) D1 and FEM1, (b) D2 and FEM2, (c) D3 and
FEM3 and (d) D4 and FEM4.

Figure 5.15: Contours of uy for solution to case 2 using D4.

is significantly worse than that achieved by [6], who found the MFS to be around one order of
magnitude slower for 3D elastostatics when implementing the MFS as a user-defined element
subroutine within the ADINA program. This indicates that there are significant efficiency gains to
be made in the PyMFS algorithm. As a result of the large number of integration points per element
(see Section 3.5), the largest contribution to computational time comes from the system matrix
assembly, due to the expense of looping over every integration point. Going forward, efficiency
could therefore be improved by implementing a strategy in which calculations for identical sphere
elements are only performed once, as applied by [6]. Another potential solution which requires
investigation is to utilise parallel processing: calculation of the contributions from multiple sphere
elements can be done in parallel by assigning individual calculations to different CPU cores.
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Figure 5.16: Case 2 FEM-Limit solution and solutions obtained using MFS discretisations along
beam mid-span, uy (x, y = 1).
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Figure 5.17: Case 2 convergence of RMSE for D1-D4 and FEM1-FEM4.

From Figure 5.17, it is determined that PyMFS now has an order of convergence of around 2.09,
whilst the FEM shows, as expected, a lower order of convergence of 1.05. These results align more
closely to those of [6], where an order of convergence of 1.92 was observed for the MFS in 3D
elastostatics, highlighting the improved performance of the method when exploiting the Dirichlet
BC nodal arrangement.
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5.2.3 Case 3: plate with a hole

The final case deals with a rectangular plate with a hole subject to compressive loading, as shown
in Figure 5.18, in order to briefly illustrate the suitability of PyMFS when dealing with problems
where geometrically complex domains are considered. Geometry and material parameters used for
case 3 are listed in Table 5.5. The PyMFS discretisations used are shown in Figure 5.19, whilst
the FEM limit solution was obtained with a mesh of 4,355 elements following a suitable mesh
convergence analysis.

Figure 5.18: Problem definition for case 3.

Table 5.5: Parameters used in study of case 1.

Parameter Symbol Value Unit

Young’s modulus E 70 N/m2

Poisson’s ratio ν 0.3 -
Width W 2 m
Height H 4 m

Figure 5.20 shows the PyMFS deformed shapes superimposed on the deformed shape of the FEM
limit solution, providing a visualisation of solution convergence. Figure 5.21 illustrates contours of
ux and uy as obtained using D4. Plots of ux(x, y = 2), uy (x = 1, y) and principal stress component
σyy (x = 1, y) are given in Figure 5.22, where dashed lines represent the hole edges. Table 5.6
presents the values of σyy at the top and bottom edges of the plate along the line x = 1, σtyy and
σbyy respectively, as well as the percentage difference between the values obtained using PyMFS
and those from the FEM limit.

From Figure 5.22, convergence of quantities ux(x, y = 2), uy (x = 1, y) and σyy (x = 1, y) towards
the FEM limit solution with each PyMFS discretisation is clear. In Table 5.6 it is shown that with
less than half of the number of DoFs of the FEM limit solution, percentage errors of just 1.1%
and -2.1% for σtyy and σbyy respectively are obtained with PyMFS D4. This indicates the suitability
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(a) (b) (c) (d)

Figure 5.19: Sphere element discretisations used for case 3: (a) D1, (b) D2, (c) D3 and (d) D4.

(a) (b) (c) (d)

Figure 5.20: Deformed shapes obtained using the MFS for case 3 superimposed on FEM limit
solution, shown for (a) D1, (b) D2, (c) D3 and (d) D4.

(a) (b)

Figure 5.21: Contour plots for case 3, D4 of (a) ux and (b) uy .
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Figure 5.22: Case 3 FEM limit solution and solutions using PyMFS discretisations D1-D4 for: (a),
(b) and (c). Dashed lines represent hole edges.
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Table 5.6: Case 2 RMSE and time multiplier, using the FEM-Limit solution as reference.

Discretisation Nodes DoFs σtyy (Pa) Percentage
error (%)

σbyy (Pa) Percentage
error (%)

FEM-Limit 4,355 8,710 -4.418 - -4.997 -

D1 14 112 -51.530 1066.4 -4.734 -5.3
D2 44 352 -9.924 124.6 -4.743 -5.1
D3 144 1,152 -4.608 4.3 -4.842 -3.1
D4 524 4,192 -4.467 1.1 -4.892 -2.1

of the MFS where geometrically complex surfaces are considered, as there is no longer imperfect
domain discretisation as a result of meshing: intersection of sphere elements with the boundary
can be calculated analytically.

50 Thomas Aston



Chapter 6

Conclusions

6.1 Summary

Overall, the project outlined in this report has been successful in accomplishing its primary aim: a
robust implementation of the MFS in a Python framework has been developed, and applied to a
series of examples which illustrate its accuracy in solving problems in 2D elastostatics, amongst
other simple problem classes.

Following a complete review of the literature on mesh-based and meshless numerical methods in
Chapter 2, the MFS was identified as a particularly promising method, for which there does not
exist a widely available software implementation. The underlying mathematical theory behind the
method was then presented in detail, in order to outline the foundations upon which problems
can be solved using the method. The overall structure and class hierarchy of PyMFS, a Python
framework for solving problems using the MFS, was then presented in Chapter 4, including an
introduction to its typical useage and workflow. A series of examples were then solved using this
framework, validating the accuracy of the developed code, with an order of convergence consistent
with literature observed.

There were, however, also a number of observations which prompt the requirement for future
research works. Inaccuracies in solutions obtained with PyMFS along surfaces upon which essential
boundary conditions are applied were observed in the absence of a special nodal arrangement, and
the low computational efficiency of the PyMFS solver presents a barrier to its application to
increasingly complex problems where a large number of system DoFs are required.

6.2 Future work

Based on the findings of this work, there are therefore three key areas of focus which have been
identified for future research works, relating to both the PyMFS solver specifically, as well as the
implementation of the MFS in general:

• Accuracy : the observed inaccuracy of PyMFS when implementing essential BCs should be
further investigated, including a comprehensive analysis on the effect of sphere discretisation
refinement in these areas.
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Chapter 6. Conclusions 6.2. Future work

• Efficiency : as a result of having computational times which are up to four orders of mag-
nitude slower than the FEM, future work should be carried out which focuses on improving
the efficiency of the PyMFS solver. In particular, efforts should focus on implementing algo-
rithms which facilitate more efficient assembly of the global system matrices, by bypassing
repeat calculations of identical spheres, and performing intensive computations in parallel by
assigning calculations to multiple CPU cores.

• Range: Once the above works have been performed, efforts should then move towards the
extension of the PyMFS framework to handle a wider class of problems (such as impulsive
dynamics problems, where the MFS appears particularly promising [34]) applied to increasingly
complex geometries (by increasing the pre and post-processing capabilities of PyMFS).
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Appendix A

Project Gantt chart

For the purpose of clarity, the project Gantt chart is presented on the following page in landscape.
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Figure A.1: Project Gantt chart.
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Appendix B

Flowchart and programming diagram
legend

Table B.1: Flowchart symbols used throughout report and their meaning.

Symbol Name Function

Start/end An oval represents a start or end point.

Input/output A parallelogram represents input or output.

Process A rectangle represents a process.

Decision A diamond represents a decision.

Python class
A shaded, rounded rectangle represents a
system class within a Python program.

Primary arrow
A solid line acts as a connector between pri-
mary process steps and objects.

Secondary arrow
A dashed line acts as a connector between
secondary process steps and objects.
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Appendix B. Flowchart and programming diagram legend
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Appendix C

MFS local weak form derivation

A full derivation of the local weak form of the MFS is here provided to supplement Section 3.3.
Considering again the arbitrary domain discretisation shown in Figure 3.1, the weak form is here
derived for each sphere for a single variable second order PDE, but can be directly extended to
equations in a greater number of variables with differential operators of higher order. The equation
considered here is:

Au = f (C.1)

for which A is a second-order differential operator and f is a forcing function. A can be written as:

A = −
d∑
i ,j=1

∂

∂xi
ai j(x)

∂

∂xj
+ c(x) (C.2)

where d is the number of dimensions considered, and ai j(x) and c(x) are measurable coefficients.
By prescribing Neumann BCs on the surface Sf it is possible to write:

d∑
i ,j=1

ai j(x)
∂u

∂xj
ni = f

s on Sf (C.3)

where ni is the directional cosine for the ith direction of the surface under consideration. Simarly,
by prescribing Dirichlet BCs on the surface Su, it is possible to write:

u = us on Su. (C.4)

The MFS uses a Bubnov-Galerkin formulation as the weighted residual scheme, where the ap-
proximation (uφ,p ∈ V φ,p) to the exact solution u is determined by setting the residual Auφ,p − f
perpendicular to the shape functions φIm. This yields:(

Auφ,p − f , φIm
)
= 0, m ∈ J (C.5)

Then, using the discretisation from Equation 3.6 and applying Green’s Theorem the local weak
form can be written for the Ith node in terms of its mth DoF as:

N∑
J=1

∑
n∈J
KImJnqJn = fIm + f̂Im (C.6)

61



Appendix C. MFS local weak form derivation

where:

KImJn = a(φIm, φJn) =

∫
VI∩V
c(x)φImφJn dV +

d∑
i ,j=1

∫
VI∩V
ai j(x)

∂φIm
∂xi

∂φJn
∂xj

dV, (C.7)

fIm =

∫
VI∩V
f φIm dV, (C.8)

f̂Im =

d∑
i ,j=1

∫
SI

φImniai j(x)
∂uφ,p

∂xj
dS. (C.9)
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Appendix D

Selected MFS equations list

Here, the specific form of the MFS local weak form and its associated terms which must be
evaluated to solve problems involving the chosen governing equations are presented in the tables
below.

Table D.1: List of the key equations implemented by the PyMFS solver in Chapter 4.

Problem class Governing equation

1D Poisson d2u(x)

dx2
+ f (x) = 0

2D Poisson d2u(x, y)

dx2
+
d2u(x, y)

dy2
+ f (x, y) = 0

2D elastostatics ∂Tϵ σ + f
B = 0

Local weak form

1D Poisson
N∑
J=1

∑
n∈J
KImJnqJn = fIm + f̂Im

2D Poisson
N∑
J=1

∑
n∈J
KImJnqJn = fIm + f̂Im

2D elastostatics
N∑
J=1

∑
n∈J
KImJnqJn = f Im + f̂ Im (D.1)

Stiffness
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1D Poisson KImJn =

∫ x2
x1

dφIm
dx

dφJn
dx
dx (D.2)

2D Poisson KImJn =

∫
VI∩V

(
∂φIm
∂x

∂φJn
∂x
+
∂φIm
∂y

∂φJn
∂y

)
dV (D.3)

2D elastostatics KImJn =

∫
VI∩V
BTImCBJn dV (D.4)

Forcing

1D Poisson fIm =

∫ x2
x1

f (x)φIm dx (D.5)

2D Poisson fIm =

∫
VI∩V
f (x, y)φImdV (D.6)

2D elastostatics f Im =

∫
VI∩V
φ
Im
f b dV (D.7)

Boundary forcing

1D Poisson f̂Im =


0, interior spheres

f sφIm(x = x
f ), Neumann spheres∑N

J=1

∑
n∈J KUImJnqJn − f UIm, Dirichlet spheres

(D.8)

2D Poisson f̂Im =


0, interior spheres∫
SfI
f sφIm dS, Neumann spheres∑N
J=1

∑
n∈J KUImJnqJn − f UIm, Dirichlet spheres

(D.9)

2D elastostatics f̂ Im =


0, interior spheres∫
SfI
φ
Im
f s dV, Neumann spheres∑N

J=1

∑
n∈J KUImJnqJn − f UIm, Dirichlet spheres

(D.10)

Dirichlet stiffness

1D Poisson KUImJn = −
[
d(φImφJn)

dx

]
x=xu

(D.11)

2D Poisson KUImJn =

∫
SuI

∂

∂x
(φImφJn) dS (D.12)
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2D elastostatics KUImJn =

∫
SuI

(
φ
Im
NCBJn + B

T
ImCN

Tφ
Jn

)
dS (D.13)

Dirichlet forcing

1D Poisson f UIm = −us
[
dφIm
dx

]
x=xu

(D.14)

2D Poisson f UIm =

∫
SuI

us
∂φIm
∂x

dS (D.15)

2D elastostatics f UIm =

∫
SuI

BTImCN
Tus dS. (D.16)

Table D.2: Definitions of variables introduced in Table D.1. Note, empty entries indicate all
variables of the corresponding entry from Table D.1 have been defined earlier in this report.

Problem class Governing equation

1D Poisson u - sought variable, x - position along length, f - distributed loading.

2D Poisson x - Cartesian x position, y - Cartesian y position.

2D elastostatics
∂ϵ =

∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x

, σ = [σxx σyy σxy ]
T, f B =

[
f bx (x, y) f

b
y (x, y)

]T
Local weak form

1D Poisson -
2D Poisson -
2D elastostatics -

Stiffness

1D Poisson
x1 = max(xmin, xI − rI), x2 = min(xmax, xI + rI) where xmin and xmax are

the minimum and maximum positions along the domain length respectively.

2D Poisson -

2D elastostatics
BJn = ∂ϵφJn =

∂φJn/∂x 0

0 ∂φJn/∂y

∂φJn/∂y ∂φJn/∂x

, C =

c11 c12 0

c12 c11 0

0 0 c33


Forcing

1D Poisson -
2D Poisson -
2D elastostatics -
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Boundary forcing

1D Poisson xu - essential BC coordinate, x f - natural BC coordinate.
2D Poisson -
2D elastostatics f s =

[
f sx (x, y) f

s
y (x, y)

]T
Dirichlet stiffness

1D Poisson -
2D Poisson -

2D elastostatics N =

[
nx 0 ny
0 ny nx

]
Dirichlet forcing

1D Poisson -
2D Poisson -
2D elastostatics us = [us(x, y) v s(x, y)]T
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Appendix E

Gauss-Legendre product rule

The Gauss-Legendre product rule [42] is adopted within PyMFS, and is here presented for evaluation
of integrals in 2D. A n point quadrature rule approximates the integral of a function f (ξ) as:∫ 1

−1
f (ξ) dξ ≈

n∑
i=1

wi f
(
ξ̂i
)

(E.1)

where wi are the weighting coefficients at the integration points ξ̂i . This rule reproduces exact
integrals for polynomials of degree d up to 2n−1. The integration weights and points for Gaussian
quadrature rules up to n = 3 are provided in Table E.1.

Table E.1: Gauss point coordinates and weights for quadrature rules up to n = 3.

n d ξ̂i wi

1 1 0 2
2 3 −1√

3
, 1√

3
1, 1

3 5 −
√
3
5 , 0,

√
3
5

5
8 ,
8
9 ,
5
9
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Appendix F

MFS file format

The PyMFS solve class accepts a .mfs file as input, the structure of which is outlined here, with a
simple example. At present, the solve class in PyMFS requires the following properties generated
during pre-processing:

• A list of the domain surfaces;

• A list of nodal coordinates;

• Sphere radius;

• Physical material properties;

• Prescribed essential boundary conditions;

• Prescribed natural boundary conditions.

The below listing illustrates a simple .mfs input file, which has been used in Chapter 5 in the study
of case 1 and meets the above requirements.

# Job: examples \2 d_elastostatics\tension\tension_N3.mfs

# External surfaces
[[[0, 0], [2, 0]], [[2, 0], [2, 2]], [[2, 2], [0, 2]], [[0, 2], [0, 0]]]

# Internal surfaces
[]

# Nodal coordinates
[[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]

# Sphere radius
1

# Physical properties
[100.0 , 0.0, 1.0]
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# Prescribed displacements [[u_sx], [u_sy], [u_sx_flag], [u_sy_flag], [surfaces ]]
[[0.0] , [0.0], [0], [0], [[3]]]

# Prescribed loads [[f_sx], [f_sy], [f_sx_flag], [f_sy_flag], [surfaces ]]
[[10.0] , [0.0], [0], [0], [[1]]]
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